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A Simpler Problem

A Simpler Problem

Definition

Define a path p of length n as a sequence of points p0,p1, . . . ,pn in the
plane such that p0 = (0,0) and pi − pi−1 = (1,1) or (1,−1) for all positive
integers i ≤ n.

Figure: A path of length 8
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A Simpler Problem

Nonnegative Paths

Definition

If each point pi has nonnegative coordinates, then p is a nonnegative path.

Figure: A nonnegative path of length 8

There are ( n
⌊n/2⌋) nonnegative paths of length n.
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A Simpler Problem

Dyck Paths

Definition

A nonnegative path that ends on the x-axis is a Dyck path.

Figure: A Dyck path of length 8

There are Cn = 1
n+1(

2n
n
) Dyck paths of length 2n (Chung and Feller, 1949).
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Permutations and their Paths

Generalization to Permutations

Notation

Let Sn denote the set of permutations of the numbers 1,2, . . . ,n. And for
a permutation w ∈Sn, let w1,w2, . . . ,wn be the entries in the
permutation.

Each permutations w ∈Sn can be associated with an up-down
signature.

The up-down signature is an (n − 1)-tuple s(w) = (σ1, σ2, . . . , σn−1)
where σi = sgn(wi+1 −wi).
So σi takes on +1 (resp. −1) if there is an ascent (resp. descent)
from index i to i + 1 in w .

Using s(w), each permutation of Sn maps to a path pw of length n − 1.
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Permutations and their Paths

Example
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Figure: pw for w = 215689734; s(w) = (−1,+1,+1,+1,+1,−1,−1,+1)
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Permutations and their Paths

Two Classes of Permutations

Definition

A nonnegative permutation w is one in which all the partial sums of s(w)
are nonnegative, i.e. pw is a nonnegative path.

For example, 1234,2341,15243, and 56128734 are all nonnegative
permutations

Definition

A Dyck permutation w is one whose path pw is Dyck.

For example, 15243,135798642, and 34251 are all Dyck permutations.
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Permutations and their Paths

Enumeration of Nonnegative Permutations

The number of Dyck permutations of length 2n + 1 has been counted
using an analog of the Chung-Feller theorem.

The count is 1
n+1A(2n + 1,n), where A(2n + 1,n) is the number of

permutations in S2n+1 with n descents (Bidkhori and Sullivant,
2011).

2n + 1 1 3 5 7 9

A(2n + 1,n) 1 4 66 2416 156190
1

n+1 ⋅A(2n + 1,n) 1 2 22 604 15619

Recall the number of Dyck paths of length 2n is 1
n+1(

2n
n
), and (2nn ) is

the number of paths of length 2n with n down-steps.

Our main goal is counting the number of nonnegative permutations
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Counting nonnegative permutations

Conjecture and Examples

Conjecture (Callan, 2006)

The number of nonnegative permutations of Sn is (n − 1)!!2 if n is even,
and n!!(n − 2)!! if n is odd.

The numbers (n − 1)!!2 if n is even and n!!(n − 2)!! if n is odd appear in
A000246 of the OEIS.

The number of permutations of Sn with odd order.

The number of permutations of Sn whose left-to-right minima occur
in odd locations.

When n = 3, there are exactly 3!!1!! = 3 nonnegative permutations:
132,123,231.

When n = 4, there are exactly 3!!2 = 9 nonnegative permutations:
1234,1243,1324,1342,1423,2314,2341,2413,3412.
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Counting nonnegative permutations

Two Remarks

Let Fn be the set of nonnegative permutations of length n, and let
f (n) = ∣Fn∣. Then the conjecture is equivalent to either of the following
two statements:

1 The probability that a randomly selected permutation of Sn+1 is
nonnegative is equal to the probability that a randomly selected path
of length n is nonnegative.

( n
⌊n/2⌋)
2n

= f (n + 1)
(n + 1)!

2 f (1) = 1, f (2n) = (2n − 1)f (2n − 1), and f (2n + 1) = (2n + 1)f (2n).
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Counting nonnegative permutations

Easy Cases

f (1) = 1; there is only one permutation in S1, and it is nonnegative.

Lemma

f (2n + 1) = (2n + 1)f (2n).

We create a map from F2n × {1,2, . . . ,2n + 1} to F2n+1.

For a w ∈ F2n add any number a from {1,2, . . . ,2n + 1} to w , and
increment all numbers in w that are ≥ a.

For example, if w = 1234 and a = 3, then we obtain

(1234,3) ↦ 12453.
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Counting nonnegative permutations

Example from F2n to F2n+1

3
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1
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5

Figure: (34126785,4) ↦ 351278964
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Counting nonnegative permutations

Example from F2n to F2n+1

3

4↦ 5

1

2

6↦ 7

7↦ 8

8↦ 9

5↦ 6

,4

Figure: (34126785,4) ↦ 351278964

Note that before adding the 4, the path ended at y = 2c + 1.
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Counting nonnegative permutations

Example that Fails from F2n−1 to F2n

4
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1
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3

Figure: (4572163,3) ↦ 56821743

Allen Wang Nonnegative permutations May 19-20, 2018 13 / 17



Counting nonnegative permutations

Example that Fails from F2n−1 to F2n

5

6

8
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1

7

4

/3

Figure: (4572163,3) ↦ 56821743
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Counting nonnegative permutations

Current Progress on the Hard Case

Using the same approach we show that

(2n)f (2n − 1) −#bad permutations = f (2n)

These “bad permutations” of length 2n begin with a permutation
that is Dyck followed by a descent.

If Dn,k is the set of Dyck permutations of Sn that end in k , then

#bad permutations of length 2n = ∑
k

k ∣D2n−1,k ∣.

We would like to show that this equals f (2n − 1).
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Counting nonnegative permutations

Possible Approaches

Use reflections or cyclic permutations to create a “one to k” map
from D2n−1,k to F2n−1.

Consider maps for Dyck paths and try to find their analogs for
permutations.

Interpret ∑k k ∣D2n−1,k ∣ as an expectation and use results derived from
Szpiro and Shevelev.

Consider the problem in a physics context: the numbers f (n) appear
in the analysis of spin-glass models and the Ising model.
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